题目内容
【题目】在平面直角坐标平面中,的两个顶点为,平面内两点、同时满足:①++=;②||=||=||;③∥.
(1)求顶点的轨迹的方程;
(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.求四边形的面积的最小值;
【答案】(1) ;(2)当,即时取等号.
【解析】
(1)由++=可得P为△ABC的重心,设A(x,y),则P(),再由||=||=||,知Q是△ABC的外心,Q在x轴上,再由∥,可得Q(),结合||=||求得顶点A的轨迹E的方程;
(2)F(,0)恰为的右焦点.当直线l1,l2的斜率存在且不为0时,设直线l1 的方程为my=x﹣.联立直线方程与椭圆方程,化为关于y的一元二次方程,利用根与系数的关系求得A、B的纵坐标得到和与积,根据焦半径公式得|A1B1|、|A2B2|,代入四边形面积公式再由基本不等式求得四边形A1A2B1B2的面积S的最小值.
(1)∵,由①知,∴为的重心,设,则,由②知是的外心,∴在轴上由③知,由,得,化简整理得:.
(2)解:恰为的右焦点,
①当直线的斜率存且不为0时,设直线的方程为,
由,
设则,
①根据焦半径公式得,
又,
所以,同理,
则,
当,即时取等号.
练习册系列答案
相关题目