题目内容
3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的值为( )A. | 9 | B. | -9 | C. | 1 | D. | -1 |
分析 由斜率垂直可得数量积为0,解方程可得x值.
解答 解:∵向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(3,x),$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=1×3+3x=0,解得x=-1
故选:D
点评 本题考查向量的数量积和垂直关系,属基础题.
练习册系列答案
相关题目
14.从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
11.甲,乙两人进行射击比赛,每人射击6次,他们命中的环数如下表:
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
注:$\overline{x}$=$\frac{1}{n}$(x1+x2+…+xn)
S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].
甲 | 5 | 8 | 7 | 9 | 10 | 6 |
乙 | 6 | 7 | 4 | 10 | 9 | 9 |
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
注:$\overline{x}$=$\frac{1}{n}$(x1+x2+…+xn)
S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].
18.将389(10)化成五进位制数的末位是( )
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
8.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断性别与休闲方式是否有关系?
本题参考:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断性别与休闲方式是否有关系?
P(k2>k) | 0.05 | 0.025 | 0.010 | 0.005 |
k | 3.84 | 5.024 | 6.635 | 7.879 |
13.若实数a,b,c成等比数列,则函数f(x)=ax2+2bx+c的图象与x轴交点的个数为( )
A. | 0个 | B. | 1个 | C. | 2个 | D. | 不能确定 |