题目内容

CD是直角三角形ABC斜边上的高,BD=2AD,将△ACD绕CD旋转到△A′CD,使二面角A′-CD-B为60°.
(1)求证:BA′⊥面A′CD;
(2)求异面直线A′C与BD所成角的余弦.
精英家教网
证明:(1)∵BD=2AD
∴BD=2AD
∵二面角A′-CD-B为60°,∠BDA为二面角A′-CD-B的平面角
∴∠BDA=60°
∴△BAA′D为直角三角形
∴A′D⊥A′B
又∵CD⊥A′B,CD∩A′D=D
∴BA′⊥面A′CD
(2)过A′作BD的平行线A′E然后构造平行四边形BA′DE
∴根据异面直线所成的角的定义可得∠CA′E异面直线A′C与BD所成角
设AD=1
∴BD=2,AB=
3
,CD=
2
,A′D=1,CE=
5

∴由余弦定理得:cos∠CA′E=
AC2+AE2EC2
2AC•AE
=
3
6

即异面直线A′C与BD所成角的余弦为
3
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网