题目内容
【题目】如图,四棱锥中,底面,,,,,,为棱的中点.
(1)求证:平面;
(2)求点到平面的距离,
【答案】(1)见证明;(2)
【解析】
(1)取的中点,则,通过勾股证得即得结合即可得证.
(2)先求再求根据体积公式计算即可.
解:(1)取的中点,连结,.如图:
因为底面所以,
又因为且,
所以平面,得.
又因为面且所以面,
在SAD中,
在SAB中,为的中点,故,
在中,所以,
在中,,故,在中,,故,在中, ,由余弦定理知,
在中,,,满足勾股定理所以,从而.
所以平面.
(2)连接BD并取中点O,连接EO,OC,过O作交CD于M点,过O作交AD于N点,如图:
在中,,,
底面且为棱的中点
底面即为直角三角形即
在中,,由余弦定理知即
.
,且,
,解得.
练习册系列答案
相关题目
【题目】某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,,,,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.
|
(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.
参考公式:,其中.
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |