题目内容
【题目】如图,A,B为椭圆的左、右顶点,直线过椭圆C的右焦点F且交椭圆于P,Q两点.连结并延长交直线于点M.
(1)若直线的斜率为,求直线的方程;
(2)求证:A,Q,M三点共线.
【答案】(1);(2)证明见解析.
【解析】
(1)设,计算出的值,最后求出直线的斜率,最后求出直线的方程;
(2)根据直线的斜率为零不为零进行分类讨论. 直线的斜率为零时,显然成立;直线的斜率不为零时,设出直线的方程与椭圆方程联立,利用根与系数的关系,只要计算出就可以证明出A,Q,M三点共线.
(1)设,所以,由题意可知:,
则.
∴,∴直线的方程为:
(2)当垂直于y轴时,方程为,此时显然有A,Q,M三点共线;
当不垂直于y轴时,设方程为,,
则直线方程为,令得,,即.
∴
∵
∴
∴A,Q,M三点共线.
练习册系列答案
相关题目