题目内容

已知无穷数列中, 、构成首项为2,公差为-2的等差数列,,构成首项为,公比为的等比数列,其中.
(1)当,时,求数列的通项公式;
(2)若对任意的,都有成立.
①当时,求的值;
②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

(1)数列的通项公式为
(2)①的值为;②详见解析.

解析试题分析:(1)根据数列的定义求出当时数列的通项公式,注意根据的取值利用分段数列的形式表示数列的通项;(2)①先确定是等差数列部分还是等比数列部分中的项,然后根据相应的通项公式以及数列的周期性求出的值;②在(1)的基础上,先将数列的前项和求出,然后利用周期性即可求出,构造,利用定义法求出的最大值,从而确定的最大值,进而可以确定是否存在,使得.
试题解析:(1)当时,由题意得,                  2分
时,由题意得,                    4分
故数列的通项公式为                5分
(2)①因为无解,所以必不在等差数列内,
因为,所以必在等比数列内,且等比数列部分至少有项,
则数列的一个周期至少有项,                           7分
所以第项只可能在数列的第一个周期或第二个周期内,
时,则,得
,则,得
的值为                                 9分
②因为
所以,               12分
,则
因为,所以,即,           14分
时,取最大,最大值为
从而的最大值为,不可能有成立,故不存在满足条件的实数     16分
考点:等差数列和等比数列的通项公式及前项和、数列的周期性、数列的单调性

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网