题目内容
如图所示,在正方体ABCD-A1B1C1D1中,E、F分别为CC1、AA1的中点,画出平面BED1F 与平面ABCD的交线.
在平面AA1D1D内,延长D1F,
∵D1F与DA不平行,
因此D1F与DA必相交于一点,设为P,
则P∈FD1,P∈DA.
又∵FD1平面BED1F,AD平面ABCD,
∴P∈平面BED1F,P∈平面ABCD.
又B为平面ABCD与平面BED1F的公共点,连接PB,
∴PB即为平面BED1F与平面ABCD的交线.如图所示.
∵D1F与DA不平行,
因此D1F与DA必相交于一点,设为P,
则P∈FD1,P∈DA.
又∵FD1平面BED1F,AD平面ABCD,
∴P∈平面BED1F,P∈平面ABCD.
又B为平面ABCD与平面BED1F的公共点,连接PB,
∴PB即为平面BED1F与平面ABCD的交线.如图所示.
练习册系列答案
相关题目