题目内容
【题目】已知函数 ,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是 .
【答案】(﹣4,﹣2)
【解析】解:先根据题意作出f(x)的简图:
得f(x)>0.
∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af(x)+b=0(a,b∈R)恰有6个不同实数解,
∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,
有:4+2a+b=0,b=﹣4﹣2a,
且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,
∴k2+ak﹣4﹣2a=0,
a=﹣2﹣k,∵0<k<2,
∴a∈(﹣4,﹣2).
所以答案是:(﹣4,﹣2).
练习册系列答案
相关题目