题目内容
20.已知椭圆C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,直线y=b与椭圆C相交于M、N两点,O为坐标原点,且△MON的面积为 $\frac{{\sqrt{2}}}{2}$.(1)求椭圆C的方程;
(2)若直线l (斜率存在且不为零)与y轴交于点P(0,m),与椭圆C交于相异两点A、B,$\overrightarrow{AP}$=$λ\overrightarrow{PB}$且$\overrightarrow{OA}$+$λ\overrightarrow{OB}$=4$\overrightarrow{OP}$,求实数m的取值范围.
分析 (1)∵离心率e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$,∴$c=\frac{\sqrt{2}}{2}a$,既有${b}^{2}=\frac{1}{2}{a}^{2}$,∴椭圆方程为$\frac{{x}^{2}}{{b}^{2}}+\frac{{y}^{2}}{2{b}^{2}}=1$,把y=b代入椭圆方程得${x}^{2}=\frac{1}{2}{b}^{2}$,求得椭圆方程;
(2)设直线l得方程为y=kx+m,然后直线与椭圆联立方程,求得相关结论.
解答 解:(1)∵离心率e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$,∴$c=\frac{\sqrt{2}}{2}a$,既有${b}^{2}=\frac{1}{2}{a}^{2}$,∴椭圆方程为$\frac{{x}^{2}}{{b}^{2}}+\frac{{y}^{2}}{2{b}^{2}}=1$,把y=b代入椭圆方程得${x}^{2}=\frac{1}{2}{b}^{2}$,
∴$x=±\frac{\sqrt{2}}{2}b$,则|MN|=$\sqrt{2}b$,
∴${S}_{△MON}=\frac{1}{2}b\sqrt{2}b=\frac{\sqrt{2}}{2}$得b2=1,
∴{a2=2,a2=2,既有椭圆C得方程为${x}^{2}+\frac{{y}^{2}}{2}=1$.
(2)由$\overrightarrow{AP}=λ\overrightarrow{PB}$得$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{OB}-\overrightarrow{OP})∴(1+λ)\overrightarrow{OP}$=$\overrightarrow{OA}+λ\overrightarrow{OB}$,
又$\overrightarrow{OA}+λ\overrightarrow{OB}=4\overrightarrow{OP}$,∴1+λ=4⇒λ=3;
设直线l得方程为y=kx+m,由$\left\{\begin{array}{l}{y=kx+m}\\{{y}^{2}+2{x}^{2}=2}\end{array}\right.$消去y得(k2+2)x2+2kmx+m2-2=0,
∴△=(2km)2-4(k2+2)(m2-2)=4(2k2-2m2+4)>0,由此得k2>m2-2①
设l与椭圆C的交点为A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=-\frac{2km}{{k}^{2}+2},{x}_{1}{x}_{2}=\frac{{m}^{2}-2}{{k}^{2}+2}$,
由$\overrightarrow{AP}=3\overrightarrow{PB}$得-x1=3x2,∴$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-2{x}_{2}}\\{{x}_{1}{x}_{2}=-3{x}_{2}^{2}}\end{array}\right.$,整理得$3({x}_{1}+{x}_{2})^{2}+4{x}_{1}{x}_{2}=0$,
∴$3(-\frac{2km}{{k}^{2}+2})^{2}+4\frac{{m}^{2}-2}{{k}^{2}+2}=0$,整理得(4m2-2)k2=4-2m2,即(2m2-1)k2=2-m2,
∵${m}^{2}=\frac{1}{2}$时,上式成立,∴${m}^{2}≠\frac{1}{2},{k}^{2}=\frac{2-{m}^{2}}{2{m}^{2}-1}$②
由①②式可得$\frac{2-{m}^{2}}{2{m}^{2}-1}>{m}^{2}-2$?$({m}^{2}-2)(1+\frac{1}{2{m}^{2}-1})<0$,
$-\sqrt{2}<m<-\frac{\sqrt{2}}{2}$,或$\frac{\sqrt{2}}{2}<m<\sqrt{2}$,
∴实数m得取值范围是($-\sqrt{2},-\frac{\sqrt{2}}{2}$)$∪(\frac{\sqrt{2}}{2},\sqrt{2})$.
点评 本题注意考查圆锥曲线方程得求法和直线与圆锥曲线联立解决相关问题的方法,在高考中属于难题.
A. | {x|1≤x<2} | B. | {x|1<x≤2} | C. | {x|x≥1} | D. | {x|x≤2} |