题目内容
15.已知等差数列{an}满足a1=1,且a2、a7-3、a8成等比数列,数列{bn}的前n项和Tn=an-1(其中a为正常数).(1)求{an}的前项和Sn;
(2)已知a2∈N*,In=a1b1+a2b2+…+anbn,求In.
分析 (1)通过a2、a7-3、a8成等比数列,计算可得d=1或$d=\frac{3}{29}$,进而可得结论;
(2)通过a2∈N*及a1=1可得an=n,进而可得bn=an-1(a-1)(n∈N*),分a=1、a≠1两种情况讨论即可.
解答 解:(1)设{an}的公差是d,
∵a2、a7-3、a8成等比数列,
∴a2•a8=$({a}_{7}-3)^{2}$,
∴(1+d)(1+7d)=(1+6d-3)2,
∴d=1或$d=\frac{3}{29}$,
当d=1时,${S_n}=n×1+\frac{1}{2}n({n-1})×1=\frac{1}{2}n({n+1})$;
当$d=\frac{3}{29}$时,${S_n}=n×1+\frac{1}{2}n({n-1})×\frac{3}{29}=\frac{3}{58}{n^2}+\frac{55}{58}n$;
(2)∵a2∈N*,a1=1,
∴{an}的公差是d=1,即an=n,
当n=1时,b1=a-1,
当n≥2时,${b_n}={T_n}-{T_{n-1}}={a^{n-1}}({a-1})$,
∵b1=a-1=a1-1(a-1)满足上式,
∴bn=an-1(a-1)(n∈N*),
当a=1时,bn=0,∴In=0;
当a≠1时,${I_n}=1×({a-1})+2a({a-1})+3{a^2}({a-1})+…+n{a^{n-1}}({a-1})$,
∴aIn=a(a-1)+2a2(a-1)+…+(n-1)an-1(a-1)+nan(a-1),
∴$({1-a}){I_n}=({a-1})+a({a-1})+…+{a^{n-1}}({a-1})-n{a^n}({a-1})$=an-1-nan(a-1),
∴In=nan-$\frac{{a}^{n}-1}{a-1}$,
∴In=$\left\{\begin{array}{l}{0,}&{a=1}\\{n{a}^{n}-\frac{{a}^{n}-1}{a-1},}&{a≠1}\end{array}\right.$.
点评 本题考查求数列的通项及前n项和,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | $({\frac{2}{3},1}]$ | B. | $({\frac{1}{2},\frac{5}{6}}]$ | C. | $({\frac{2}{3},\frac{4}{3}}]$ | D. | $({\frac{3}{4},\frac{5}{4}}]$ |