题目内容

设M为部分正整数组成的集合,数列的首项,前n项和为,已知对任意整数k属于M,当n>k时,都成立。
(1)设M={1},,求的值;
(2)设M={3,4},求数列的通项公式。
(1)8   (2)
考察等差数列概念、和与通项关系、集合概念、转化与化归、分析问题与解决问题的能力,其中(1)是容易题,(2)是难题。
(1)即:
所以,n>1时,成等差,而
(2)由题意:

时,由(1)(2)得:
由(3)(4)得:
由(1)(3)得:
由(2)(4)得:
由(7)(8)知:成等差,成等差;设公差分别为:
由(5)(6)得:
由(9)(10)得:成等差,设公差为d,
在(1)(2)中分别取n=4,n=5得:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网