题目内容

12.在空间直角坐标系中,已知点P(1,$\sqrt{2}$,$\sqrt{3}$),过P作平面yOz的垂线PQ,则垂足Q的坐标为(  )
A.(0,$\sqrt{2}$,0)B.(0,$\sqrt{2}$,$\sqrt{3}$)C.(1,0,$\sqrt{3}$)D.(1,$\sqrt{2}$,0)

分析 点Q在yOz平面内,得它的横坐标为0.又根据PQ⊥yOz平面,可得P、Q的纵坐标、竖坐标都相等,由此即可得到Q的坐标.

解答 解:由于垂足Q在yOz平面内,可设Q(0,y,z)
∵直线PQ⊥yOz平面
∴P、Q两点的纵坐标、竖坐标都相等,
∵P的坐标为(1,$\sqrt{2}$,$\sqrt{3}$),
∴y=$\sqrt{2}$,z=$\sqrt{3}$,可得Q(0,$\sqrt{2}$,$\sqrt{3}$)
故选:B.

点评 本题给出空间坐标系内一点,求它在yOz平面的投影点的坐标,着重考查了空间坐标系的理解和线面垂直的性质等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网