题目内容
【题目】若0<a<b,且a+b=1,则下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
【答案】C
【解析】解答:∵0<a<b,且a+b=1 ∴b
∴log2b> =﹣1
∵0<a<b,且a+b=1
∴a
∴log2a<﹣1
∴log2a+log2b+1<log2b
∵0<a<b,且a+b=1
∴a3+a2b+ab2+b3=a2+b2∴b﹣(a2+b2)=b(a+b)﹣a2+b2=ab﹣a2=a(b﹣a)>0
∴log2b>log2(a3+a2b+ab2+b3)
故选C
分析:本题将﹣1变为 ,根据0<a<b,且a+b=1知b ,a 故log2b>﹣1,log2a<﹣1,故log2a+log2b+1<log2b,故只需要比较b与a3+a2b+ab2+b3的大小,根据0<a<b,且a+b=1,知a3+a2b+ab2+b3=a2+b2 , 而b=b(a+b),0<a<b即得b>a2+b2即可.
【考点精析】根据题目的已知条件,利用基本不等式的相关知识可以得到问题的答案,需要掌握基本不等式:,(当且仅当时取到等号);变形公式:.
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?
(参考公式: ,其中)