题目内容
设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )
A. | B. | C. | D. |
C
如图所示,设直线x=a与x轴的交点为Q,
由题意可知,
∠F2F1P=∠F1PF2=30°,
|PF2|=|F1F2|=2c,
∴∠PF2Q=60°,∠F2PQ=30°.
∴|F2Q|=|PF2|.
即a-c=·2c,
∴e==.
由题意可知,
∠F2F1P=∠F1PF2=30°,
|PF2|=|F1F2|=2c,
∴∠PF2Q=60°,∠F2PQ=30°.
∴|F2Q|=|PF2|.
即a-c=·2c,
∴e==.
练习册系列答案
相关题目