题目内容

【题目】坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线上两点的极坐标分别为.

(1)设为线段上的动点,求线段取得最小值时,点的直角坐标;

(2)求以为为直径的圆的参数方程,并求在(1)条件下直线与圆相交所得的弦长.

【答案】(1)(2)3

【解析】

试题分析:(1)先根据的极坐标化为直角坐标,再根据两点式求出线段所在直线方程,由图可知当线段时,线段获得最小值,此时由直线方程联立方程组可解交点坐标(2)先求出以为直径的圆直角坐标方程,再利用三角代换得参数方程是为参数),最后根据垂径定理求弦长

试题解析:(1)的极坐标化为直角坐标分别为,故直线的斜率为,直线的方程为.由题意,当线段时,线段获得最小值,此时直线的斜率为,所以直线的的方程为,联立,解得,故所求点的直角坐标为.

(2)因为的中点坐标为,故以为直径的圆直角坐标方程为,化为参数方程是为参数),因为圆心到直线的距离为,所以直线与圆相交所得的弦长为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网