题目内容
10.集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},C={x|x=6n+3,n∈Z}(1)若c∈C,是否存在a∈A,b∈B,使c=a+b成立?
(2)对于任意a∈A,b∈B,是否一定有(a+b)∈C?请证明你的结论.
分析 根据已知条件知:若a∈A,b∈B,则一定存在n1,n2∈z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需满足:x=6n+3=3•2n+3,显然n1+n2不一定等于2n,所以不一定有a+b=c且c∈C.
解答 解:(1)∵a∈A,b∈B;
∴分别存在n1,n2∈z使得:a=3n1+1,b=3n2+2;
∴a+b=3(n1+n2)+3;
而集合M中的条件是:x=6n+3=3•2n+3,
∴n1+n2=2n,存在a∈A,b∈B,使c=a+b成立;
(2)要使a+b∈C,则n1+n2=2n,这显然不一定;
∴不一定有a+b=c且c∈C.
点评 本题考查描述法表示集合,元素与集合的关系,以及描述法表示一个集合时,如何判断一个元素是否是这个集合的元素.
练习册系列答案
相关题目
18.已知圆C:(x-4)2+(y-3)2=1和两点A(0,-m),B(0,m)(m>0).若圆C上存在点P使得∠APB=$\frac{π}{2}$,则m的范围是( )
A. | [4,6] | B. | (4,6) | C. | (6,+∞) | D. | (0,4) |
2.定义符号函数sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,设f(x)=$\frac{sgn(\frac{1}{2}-x)+1}{2}$•f1(x)+$\frac{sgn(x-\frac{1}{2})+1}{2}$•f2(x),x∈[0,1],若f1(x)=2(1-x),f2(x)=x+$\frac{1}{2}$,若f(x)=a有两个解,则a的取值范围是( )
A. | $(\frac{3}{2},2]$ | B. | [1,2] | C. | $\{1\}∪(\frac{3}{2},2]$ | D. | $(1,\frac{3}{2}]$ |