题目内容

8.已知奇函数f(x)在(0,+∞)上单调递减,且f(2)=0,则不等式x•f(x)<0的取值范围是{x|x>2,或x<-2}.

分析 根据题意可得到f(x)在(-∞,0)上单调递减,f(-2)=0,从而由不等式x•f(x)<0可得,$\left\{\begin{array}{l}{x>0}\\{f(x)<f(2)}\end{array}\right.$,或$\left\{\begin{array}{l}{x<0}\\{f(x)>f(-2)}\end{array}\right.$,根据f(x)的单调性便可得出x的取值范围.

解答 解:奇函数f(x)在(0,+∞)上单调递减;
∴f(x)在(-∞,0)上单调递减;
f(2)=0,∴f(-2)=0;
∴由x•f(x)<0得,$\left\{\begin{array}{l}{x>0}\\{f(x)<f(2)}\end{array}\right.$,或$\left\{\begin{array}{l}{x<0}\\{f(x)>f(-2)}\end{array}\right.$;
∴x>2,或x<-2;
∴原不等式的取值范围为{x|x>2,或x<-2}.
故答案为:{x|x>2,或x<-2}.

点评 考查奇函数的定义,奇函数在对称区间上的单调性,将不等式变成不等式组从而解不等式的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网