题目内容

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设数学公式数学公式,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设数学公式数学公式数学公式.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:数学公式(n∈N*).

(1)证明:∵an+1=can+1-c,∴an+1-1=c(an-1)
∴a≠1时,{an-1}等比数列.
∵a1-1=a-1,∴,∴
(2)解:由(1)可得

∴Sn=
Sn=
两式相减可得Sn==1-

(3)证明:


分析:(1)an+1=can+1-c,可得an+1-1=c(an-1),从而可得a≠1时,{an-1}是等比数列,即可求{an}通项公式;
(2)求出数列{bn}的通项,利用错位相减法,可求数列的和;
(3)确定数列{dn}的通项.利用放缩法求和,即可证得结论.
点评:本题考查等比数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网