题目内容

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

【答案】(1)(2)

【解析】

1)首先把参数方程转化为普通方程,利用普通方程与极坐标方程互化的公式即可得到曲线的极坐标方程;

(2)分别联立的极坐标方程、的极坐标方程,得到两点的极坐标,即可求出的长,再计算出到直线的距离,由此即可得到的面积。

解:(1

其普通方程为,化为极坐标方程为

2)联立的极坐标方程:,解得点极坐标为

联立的极坐标方程:,解得点极坐标为,所以,又点到直线的距离

的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网