题目内容
【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.
【答案】(1)(2)
【解析】
(1)首先把参数方程转化为普通方程,利用普通方程与极坐标方程互化的公式即可得到曲线的极坐标方程;
(2)分别联立与的极坐标方程、与的极坐标方程,得到、两点的极坐标,即可求出的长,再计算出到直线的距离,由此即可得到的面积。
解:(1),
其普通方程为,化为极坐标方程为
(2)联立与的极坐标方程:,解得点极坐标为
联立与的极坐标方程:,解得点极坐标为,所以,又点到直线的距离,
故的面积.
练习册系列答案
相关题目