题目内容
【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为,
求:分数在的学生人数;
这50名学生成绩的中位数精确到;
若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.
【答案】(1)3人; (2)76.7; (3).
【解析】
(1)由所有的矩形面积和为1可得:分数在[50,60)的频率为0.06,即可求出;
(2)由0.040+0.06+0.2=0.3,故中位数落在第四组,则中位数为7010;
(3)分数在[40,50)的有2人,记为a,b,在[50,60)共有3人,记为c,d,e,由此利用列举法能求出从分数[40,60)的5名学生任选2人,两人来自不同组的概率.
由所有的矩形面积和为1可得:分数在的频率为,故分数在的人数是人,
由,
故中位数落在第四组,
则中位数为
分数在的有2人,记为a,b,在共有3人,记为c,d,e,
从分数在的5名学生任选2人的方法有:ab、ac、ad、ae、bc、bd、be、cd、ce、de,共10种,
两人来自不同组的有ac、ad、ae、bc、bd、be共6种,
两人来自不同组的概率
【题目】某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;(精确到0.01)
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
参考公式与临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.
(3)若,求的值.