题目内容
【题目】已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若A∩B=,求实数a的取值范围.
【答案】
(1)解:当a=3时,A={x|2﹣a≤x≤2+a}={x|﹣1≤x≤5},B={x|x≤1或x≥4}.
则A∩B={x|﹣1≤x≤1或4≤x≤5}
(2)解:若2+a<2﹣a,即a<0时,A=,满足A∩B=,
若a≥0,若满足A∩B=,
则 ,即
,解得0≤a<1
综上实数a的取值范围a<1
【解析】(1)当a=3时,根据集合的基本运算即可求A∩B;(2)若A∩B=,建立条件关系即可求实数a的取值范围.
【考点精析】利用集合的交集运算对题目进行判断即可得到答案,需要熟知交集的性质:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,则A
B,反之也成立.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某研究所设计了一款智能机器人,为了检验设计方案中机器人动作完成情况,现委托某工厂生产个机器人模型,并对生产的机器人进行编号:
,采用系统抽样的方法抽取一个容量为
的机器人样本,试验小组对
个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数据如图所示,请据此回答如下问题:
分组 | 机器人数 | 频率 |
0.08 | ||
10 | ||
10 | ||
6 |
(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为,这
个机器人分别放在
三个房间,从
到
在
房间,从
到
在
房间,从
到
在
房间,求
房间被抽中的人数是多少?
(3)从动作个数不低于的机器人中随机选取
个机器人,该
个机器人中动作个数不低于
的机器人记为
,求
的分布列与数学期望.