题目内容

【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 ,再求点的直线的距离 到直线的距离为面积为 所求方程为.

试题解析:

(Ⅰ)由题意得,∴

,∴

∴椭圆的方程为.

(Ⅱ)①当直线斜率不存在时,不妨取

面积为 ,不符合题意.

②当直线斜率存在时,设直线

化简得

∵点的直线的距离

是线段的中点,∴点到直线的距离为

面积为

,∴,∴,∴

∴直线的方程为.

型】解答
束】
25

【题目】已知函数.

(Ⅰ)求函数的单调区间与极值

(Ⅱ)若证明 .

【答案】(1)的单调增区间为,单调减区间为,函数处取得极大值,且;(2)见解析.

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间以及极值(2)为极值点偏移问题,先构造函数 ,根据导数可得单调性,即得,最后根据单调性得,即证得结论

试题解析:(Ⅰ)由

易得的单调增区间为,单调减区间为

函数处取得极大值,且

(Ⅱ)由 ,不妨设,则必有

构造函数

,所以上单调递增, ,也即恒成立.

,则

所以

,又因为 ,且上单调递减,

所以,即证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网