题目内容
【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.
【答案】(Ⅰ)(Ⅱ)或
【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 得 ,再求点的直线的距离 点到直线的距离为面积为 ∴或 所求方程为或.
试题解析:
(Ⅰ)由题意得,∴,
∵,∴,
∴椭圆的方程为.
(Ⅱ)①当直线斜率不存在时,不妨取,
∴面积为 ,不符合题意.
②当直线斜率存在时,设直线,
由化简得,
设,
∴ ,
∵点的直线的距离,
又是线段的中点,∴点到直线的距离为,
∴面积为 ,
∴,∴,∴,∴或,
∴直线的方程为或.
【题型】解答题
【结束】
25
【题目】已知函数.
(Ⅰ)求函数的单调区间与极值;
(Ⅱ)若,且,证明: .
【答案】(1)的单调增区间为,单调减区间为,函数在处取得极大值,且;(2)见解析.
【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间以及极值(2)为极值点偏移问题,先构造函数, ,根据导数可得单调性,即得,最后根据单调性得,即证得结论
试题解析:(Ⅰ)由,
易得的单调增区间为,单调减区间为,
函数在处取得极大值,且
(Ⅱ)由, ,不妨设,则必有,
构造函数, ,
则 ,所以在上单调递增, ,也即对恒成立.
由,则,
所以 ,
即,又因为, ,且在上单调递减,
所以,即证.
练习册系列答案
相关题目