题目内容

(2013•烟台二模)设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的(  )
分析:先利用导数求命题f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增的充要条件,再利用充要条件的定义判断结果即可
解答:解:若f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,则f′(x)=
1
x
+4x+m≥0在(0,+∞)上恒成立
即m≥-(
1
x
+4x)在(0,+∞)上恒成立
∵-(
1
x
+4x)≤-2
1
x
×4x
=-4
∴m≥-4,∵{m|m≥-4}⊆{m|m≥-5}
∴p是q的充分不必要条件
故选A
点评:本题考查了充要条件的定义运用和导数在函数单调性中的应用,解题时要注意已知函数单调性,求参数范围题型的解决办法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网