题目内容

(2013•烟台二模)在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn=
1
Sn
,求的{cn}的前n项和Tn
分析:(Ⅰ)根据条件列出关于公差和公比的方程组,解方程即可求出公差和公比,进而求出通项;
(Ⅱ)对通项化简,利用裂项法求和,即可得到数列的前n项和.
解答:解:(Ⅰ)设{an}的公差为d,
因为
b2+S2=12
q=
S2
b2

所以b2+b2q=12,即q+q2=12---(2分)
∴q=3或q=-4(舍),
b2=3,s2=9,a2=6,d=3.---(4分)
故an=3+3(n-1)=3n,
bn=3n-1.----------(6分)
(Ⅱ)因为Sn=
n(3+3n)
2
=
3n(n+1)
2
,------(8分)
所以:cn=
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)
.---(10分)
故Tn=
2
3
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2
3
(1-
1
n+1
)=
2n
3(n+1)
.-(12分)
点评:本题考查数列的通项与求和,考查等差数列与等比数列的综合,考查裂项法求数列的和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网