题目内容
【题目】已知f(x)=x3﹣ax2﹣a2x+1,(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的图象不存在与l:y=﹣x平行或重合的切线,求实数a的取值范围.
【答案】解:(Ⅰ)f(x)=x3﹣ax2﹣a2x+1, ∴f'(x)=3x2﹣2ax﹣a2=(x﹣a)(3x+a),
当a<0时,x∈(﹣∞,a)和(﹣ ,+∞)时,f'(x)>0,f(x)递增,
x∈(a,﹣ )时,f'(x)<0,f(x)递减;
当a>0时,x∈(﹣∞,﹣ )和(a+∞)时,f'(x)>0,f(x)递增,
x∈(﹣ ,a)时,f'(x)<0,f(x)递减;
当a=0时,f'(x)≥0恒成立,f(x)R上递增.
(Ⅱ)若f(x)的图象不存在与l:y=﹣x平行或重合的切线,
∴f'(x)≠﹣1,
∴f'(x)=3x2﹣2ax﹣a2≠﹣1恒成立,
∴3x2﹣2ax﹣a2+1≠0恒成立,
∴3x2﹣2ax﹣a2+1>0恒成立,
∴△=4a2﹣12(﹣a2+1)<0,
∴﹣ <a< .
【解析】(Ⅰ)求出导函数,对参数a进行分类讨论得出函数的单调区间即可;(Ⅱ)求出导函数,不问题转化为3x2﹣2ax﹣a2+1>0恒成立,利用判别式求解即可.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |