题目内容

设函数
(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若.求a的最小值.
【答案】分析:(Ⅰ)把函数解析式第一项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,第二项利用二倍角的余弦函数公式化简,合并整理后,再利用两角和与差的余弦函数公式化为一个角的余弦函数,由余弦函数的值域得到余弦函数的最大值为1,可得出函数f(x)的最大值,并根据余弦函数的图象与性质得出此时x的范围,即可确定出使f(x)取最大值是x的集合;
(Ⅱ)由f(B+C)=,将B+C代入第一问化简后的式子中,利用诱导公式化简后得到cos(2A-)的值,由A为三角形的内角,得出2A-的范围,利用特殊角的三角函数值求出A的度数,进而确定出cosA的值,再利用余弦定理表示出a2=b2+c2-2bccosC,利用完全平方公式化简后,将b+c及cosC的值代入,并利用基本不等式求出bc的最大值,可得出a的最小值.
解答:解:(Ⅰ)f(x)=cos(2x-)+2cos2x
=(cos2xcos+sin2xsin)+(1+cos2x)
=cos2x-sin2x+1=cos(2x+)+1,(3分)
∵-1≤cos(2x+)≤1,即cos(2x+)最大值为1,
∴f(x)的最大值为2,(4分)
要使f(x)取最大值,cos(2x+)=1,即2x+=2kπ(k∈Z),
解得:x=kπ-(k∈Z),
则x的集合为{x|x=kπ-(k∈Z)};(6分)
(Ⅱ)由题意,f(B+C)=cos[2(B+C)+]+1=,即cos(2π-2A+)=
化简得:cos(2A-)=,(8分)
∵A∈(0,π),∴2A-∈(-),
则有2A-=,即A=,(10分)
在△ABC中,b+c=2,cosA=
由余弦定理,a2=b2+c2-2bccos=(b+c)2-3bc=4-3bc,(12分)
由b+c=2知:bc≤=1,当且仅当b=c=1时取等号,
∴a2≥4-3=1,
则a取最小值1.(14分)
点评:此题考查了余弦定理,三角函数的化简求值,余弦函数的图象与性质,基本不等式,两角和与差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值,以及余弦函数的定义域与值域,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网