题目内容
【题目】长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,高为4,则顶点A1到截面AB1D1的距离为 .
【答案】
【解析】解:如图,设A1C1∩B1D1=O1 , ∵B1D1⊥A1O1 , B1D1⊥AA1 , ∴B1D1⊥平面AA1O1 ,
∴平面AA1O1⊥面AB1D1 , 交线为AO1 ,
在面AA1O1内过A1作A1H⊥AO1于H,连接A1H,则A1H的长即是点A1到截面AB1D1的距离,
在Rt△A1O1A中,A1O1= ,AO1=3 ,
由A1O1A1A=hAO1 , 可得A1H=
故答案为:
分析:设A1C1∩B1D1=O1 , 根据线面垂直的判定定理可知B1D1⊥平面AA1O1 , 再根据面面垂直的判定定理可知故平面AA1O1⊥面AB1D1 , 交线为AO1 , 在面AA1O1内过A1作A1H⊥AO1于H,则A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,利用等面积法求出A1H即可.
练习册系列答案
相关题目
【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
天数x(天) | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
日经济收入Q(万元) | 154 | 180 | 198 | 208 | 210 | 204 | 190 |
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.