题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)当时,记在区间的最大值为,最小值为,求的取值范围.
【答案】(1)见详解;(2) .
【解析】
(1)先求的导数,再根据的范围分情况讨论函数单调性;(2) 讨论的范围,利用函数单调性进行最大值和最小值的判断,最终求得的取值范围.
(1)对求导得.所以有
当时,区间上单调递增,区间上单调递减,区间上单调递增;
当时,区间上单调递增;
当时,区间上单调递增,区间上单调递减,区间上单调递增.
(2)
若,在区间单调递减,在区间单调递增,所以区间上最小值为.而,故所以区间上最大值为.
所以,设函数,求导当时从而单调递减.而,所以.即的取值范围是.
若,在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.
所以,而,所以.即的取值范围是.
综上得的取值范围是.
练习册系列答案
相关题目