题目内容
【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC=2
(1)求证:AM⊥平面EBC
(2)(文)求三棱锥C﹣ABE的体积.
(3)(理)求二面角A﹣EB﹣C的大小.
【答案】
(1)证明:∵四边形ACDE是正方形,∴EA⊥AC,
∵平面ACDE⊥平面ABC,∴EA⊥平面ABC,
∴以点A为原点,以过A点平行于BC的直线为x轴,以AC和AE为y轴和z轴,
建立如图空间直角坐标系A﹣xyz.
设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),
∵M是正方形ACDE的对角线的交点,∴M(0,1,1).
=(0,1,1), =(0,2,﹣2), =(2,0,0),
∴ =0, =0,∴AM⊥EC,AM⊥CB,
∴AM⊥平面EBC
(2)解:VC﹣ABE=VE﹣ABC= =
(3)解:设平面EAB的法向量为 =(x,y,z),
则 ,且 ,
∴ ,且 .
∴ ,取x=1,得 =(1,﹣1,0).
又∵ 为平面EBC的一个法向量,且 =(0,1,1),
∴cos< >= =﹣ ,
设二面角A﹣EB﹣C的平面角为θ,则cosθ=|cos< >|= ,
∴θ=60°.
∴二面角A﹣EB﹣C的大小为60°.
【解析】(1)推导出EA⊥AC,从而EA⊥平面ABC,以点A为原点,以过A点平行于BC的直线为x轴,以AC和AE为y轴和z轴,建立空间直角坐标系A﹣xyz,利用向量法能证明AM⊥平面EBC.(2)(文)由VC﹣ABE=VE﹣ABC , 能求出三棱锥C﹣ABE的体积.(3)(理)求出平面EAB的法向量和平面EBC的一个法向量,利用向量法能求出二面角A﹣EB﹣C的大小.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.