题目内容

【题目】已知函数f(x)= ,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

【答案】D
【解析】解:∵g(x)=b﹣f(2﹣x), ∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x),
由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b,
设h(x)=f(x)+f(2﹣x),
若x≤0,则﹣x≥0,2﹣x≥2,
则h(x)=f(x)+f(2﹣x)=2+x+x2
若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,
则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,
若x>2,﹣x<﹣2,2﹣x<0,
则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.
即h(x)=
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+ 2+
当x>2时,h(x)=x2﹣5x+8=(x﹣ 2+
故当b= 时,h(x)=b,有两个交点,
当b=2时,h(x)=b,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=b恰有4个根,
则满足 <b<2,
故选:D.

求出函数y=f(x)﹣g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网