题目内容
【题目】已知函数f(x)=ax﹣a+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.
【答案】
(1)解:由已知a2﹣a+1=2,∴a=2
(2)解:∵f(x)=2x﹣2+1,
∴g(x)=2x,
∴h(x)=log2x(x>0)
(3)解:要使不等式有意义:则有1<x≤4且1<x2≤4,
∴1<x≤2,
据题有 在(1,2]恒成立,
∴设t=log2x(1<x≤2),
∴0<t≤1,
∴(t+2)2≤2t+tm+6在(0,1]时恒成立.
即: 在[0,1]时恒成立,
设 ,t∈(0,1]单调递增,
∴t=1时,有ymax=1,
∴m≥1
【解析】(1)令x=a,则f(a)=2,从而可知f(x)过定点(a,2),再由题设即可求得a值;(2)根据图象平移规则:左加右减,上加下减即可求得g(x)表达式,从而可得h(x)的解析式;(3)令t=log3x,则t∈[0,2],不等式[h(x)+2]2≤h(x2)+m+6 恒成立,可转化为关于t的二次不等式恒成立,进而转化为求函数的最值解决,利用二次函数的性质易求其最值;
练习册系列答案
相关题目