题目内容
【题目】如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
【答案】(1)炮的最大射程是10千米.
(2)当不超过6千米时,炮弹可以击中目标.
【解析】
试题(1)求炮的最大射程即求(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解
试题解析:(1)令y=0,得kx-(1+k2)x2=0,
由实际意义和题设条件知x>0,k>0,
故x==≤=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标
存在k>0,使3.2=ka-(1+k2)a2成立
关于k的方程a2k2-20ak+a2+64=0有正根
判别式Δ=(-20a)2-4a2(a2+64)≥0
a≤6.
所以当a不超过6(千米)时,可击中目标.
【题目】某市工业部门计划对所辖中小型企业推行节能降耗技术改造,下面是对所辖企业是否支持技术改造进行的问卷调查的结果:
支持 | 不支持 | 合计 | |
中型企业 | 40 | ||
小型企业 | 240 | ||
合计 | 560 |
已知从这560家企业中随机抽取1家,抽到支持技术改造的企业的概率为.
(1)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(2)从上述支持节能降耗的中小企业中按分层抽样的方法抽出12家企业,然后从这12家企业选出9家进行奖励,分别奖励中型企业50万元,小型企业10万元.设为所发奖励的金额.
求的分布列和期望.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
【题目】假设关于某种设备的使用年限(年)与所支出的维修费用 (万元)有如下统计:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)与具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
【题目】下列说法中,错误的是( )
A.将一组数据中的每个数据都加上同一个常数后,方差不变
B.对于回归方程,变量每增加一个单位,平均增加5个单位
C.线性回归方程所对应的直线必过点
D.在一个列联表中,由计算得,则有的把握说两个变量有关
本题可以参考独立性检验临界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |