题目内容
【题目】抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )
A. B. C. D.
【答案】A
【解析】
设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.
设|AF|=a,|BF|=b,连接AF、BF
由抛物线定义,得|AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2﹣2abcos120°=a2+b2+ab
配方得,|AB|2=(a+b)2﹣ab,
又∵ab≤
∴(a+b)2﹣ab≥(a+b)2(a+b)2(a+b)2
得到|AB|(a+b).
所以,即的最大值为.
故选:A.
练习册系列答案
相关题目