题目内容

.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差
ξ
-1
0
1
P

1-2q[
q2
   

ξ
-1
0
1
P



    

  
本题考查随机变量分布列的性质及应用、数学期望与方差的计算,属基本题
依题意,先应按分布列的性质,求出q的数值后,再计算出Eξ与Dξ.
因为
那么可知q的值,进而代入期望和方差公式求解得到。
解:依题意,先应按分布列的性质,求出q的数值后,再计算出Eξ与Dξ.
由于离散型随机变量的分布列满足:
(1)pi≥0,i=1,2,3,…; (2)p1p2p3+…=1.       
解得.   …………6分
故ξ的分布列为
ξ
-1
0
1
P



       …………9分

    …………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网