题目内容
【题目】已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)与f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.
【答案】
(1)解:∵f(xy)=f(x)+f(y),f(2)=1.
∴f(4)=f(2×2)=f(2)+f(2)=2
∴f(8)=f(4×2)=f(4)+f(2)=3
(2)解:根据题意,不等式f(x)﹣f(x﹣2)>3可变为
f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)]
∵f(x)在(0,+∞)上是增函数, ,
解得 ,
∴原不等式的解集是
【解析】(1)直接把4分成2×2,再代入f(xy)=f(x)+f(y),结合f(2)=1即可求出f(4)的值,同理可得f(8)的值;(2)先把不等式f(x)﹣f(x﹣2)>3转化为f(x)>f(x﹣2)+3=f(x﹣2)+f(8)=f[8(x﹣2)];再结合f(x)是定义在(0,+∞)上的增函数即可求出不等式的解集.(注意其定义域的限制)
练习册系列答案
相关题目