题目内容
【题目】已知函数.
(1)求函数的零点;
(2)设函数的图象与函数的图象交于,两点,求证:;
(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
【答案】(1)x=1 (2)证明见解析 (3)
【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;
(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;
(3)不等式 对一切正实数恒成立,,设,分类讨论进而求解.
解:(1)令,所以,
当时,,在上单调递增;
当时,,在单调递减;
所以,所以的零点为.
(2)由题意, ,
要证 ,即证,即证,
令,则,由(1)知,当且仅当时等号成立,所以,
即,所以原不等式成立.
(3)不等式 对一切正实数恒成立,
,
设,,
记,△,
①当△时,即时,恒成立,故单调递增.
于是当时,,又,故,
当时,,又,故,
又当时,,
因此,当时,,
②当△,即时,设的两个不等实根分别为,,
又,于是,
故当时,,从而在单调递减;
当时,,此时,于是,
即 舍去,
综上,的取值范围是.
练习册系列答案
相关题目