ÌâÄ¿ÄÚÈÝ
3£®ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒa2+a16=34£¬S4=16£®ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬Âú×ãTn+bn=1£®£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ð´³öÒ»¸öÕýÕûÊým£¬Ê¹µÃ$\frac{1}{{{a_m}+9}}$ÊÇÊýÁÐ{bn}µÄÏ
£¨3£©ÉèÊýÁÐ{cn}µÄͨÏʽΪcn=$\frac{a_n}{{{a_n}+t}}$£¬ÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊýtºÍk£¨k¡Ý3£©£¬Ê¹µÃc1£¬c2£¬ck³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Í¨¹ý½â·½³Ì×é$\left\{\begin{array}{l}{2{a}_{1}+16d=34}\\{4{a}_{1}+6d=16}\end{array}\right.$£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýTn=1-bnÓëTn+1=1-bn+1×÷²î¿ÉÖªÊýÁÐ{bn}ÊÇÊ×Ïî¡¢¹«±È¾ùΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬Í¨¹ý»¯¼òÖ»Òªm+42n¼´¿É£»
£¨3£©Í¨¹ý£¨1£©Öªcn=$\frac{2n-1}{2n-1+t}$£¬½ø¶øÖ»Ðèk=3+$\frac{4}{t-1}$£¬¿¼Âǵ½kÓët¶¼ÊÇÕýÕûÊý£¬ÒÀ´ÎÑ¡È¡²¢¼ìÑé¼´¿É£®
½â´ð ½â£º£¨1£©ÉèÊýÁÐ{an}µÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÓÉÒÑÖª£¬ÓÐ$\left\{\begin{array}{l}{2{a}_{1}+16d=34}\\{4{a}_{1}+6d=16}\end{array}\right.$£¬
½âµÃ£ºa1=1£¬d=2£¬
¡àÊýÁÐ{an}µÄͨÏʽan=2n-1£»
£¨2£©µ±n=1ʱ£¬b1=T1=1-b1£¬ËùÒÔb1=$\frac{1}{2}$£¬
ÓÉTn=1-bn£¬µÃTn+1=1-bn+1£¬
Á½Ê½Ïà¼õ£¬µÃ£ºbn+1=bn-bn+1£¬¼´bn+1=$\frac{1}{2}$bn£¬
¡àÊýÁÐ{bn}ÊÇÊ×Ïî¡¢¹«±È¾ùΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬
¡àbn=$\frac{1}{{2}^{n}}$£¬
¡ß$\frac{1}{{a}_{m}+9}$=$\frac{1}{2m+8}$=$\frac{1}{2£¨m+4£©}$£¬
¡àҪʹ$\frac{1}{{a}_{m}+9}$ÊÇÊýÁÐ{bn}ÖеÄÏֻҪm+4=2n¼´¿É£¬
¹Ê¿ÉÈ¡m=4£»
£¨3£©½áÂÛ£º´æÔÚ·ûºÏÌõ¼þµÄÕýÕûÊýtºÍk£¬ËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©Îª£º£¨2£¬7£©¡¢£¨3£¬5£©¡¢£¨5£¬4£©£®
ÀíÓÉÈçÏ£º
ÓÉ£¨1£©Öª£¬cn=$\frac{2n-1}{2n-1+t}$£¬
Ҫʹc1£¬c2£¬ck³ÉµÈ²îÊýÁУ¬±ØÐë2c2=c1+ck£¬
¼´$\frac{6}{3+t}$=$\frac{1}{1+t}$+$\frac{2k-1}{2k-1+t}$£¬»¯¼òµÃk=3+$\frac{4}{t-1}$£®
ÒòΪkÓët¶¼ÊÇÕýÕûÊý£¬ËùÒÔtÖ»ÄÜÈ¡2£¬3£¬5£®
µ±t=2ʱ£¬k=7£»
µ±t=3ʱ£¬k=5£»
µ±t=5ʱ£¬k=4£®
×ÛÉÏ¿ÉÖª£¬´æÔÚ·ûºÏÌõ¼þµÄÕýÕûÊýtºÍk£¬
ËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©Îª£º£¨2£¬7£©¡¢£¨3£¬5£©¡¢£¨5£¬4£©£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏעÒâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |
A£® | $\frac{1}{3}$ | B£® | 3 | C£® | $\frac{13}{9}$ | D£® | $\frac{9}{13}$ |
A£® | £¨4£¬+¡Þ£© | B£® | [4£¬+¡Þ£© | C£® | £¨-¡Þ£¬4£© | D£® | £¨4£¬7£© |