题目内容

7.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,求k的值.

分析 (1)由|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$,结合已知条件利用向量的数量积公式能求出结果.
(2)由向量互相垂直的性质得(k$\overrightarrow{a}$+$\overrightarrow{b}$)•(k$\overrightarrow{a}$-$\overrightarrow{b}$)=0,由此能求出k的值.

解答 解:(1)∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$
=$\sqrt{4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}}$
=$\sqrt{4+4-4×1×2×cos60°}$=2.
(2)∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow{b}$)•(k$\overrightarrow{a}$-$\overrightarrow{b}$)=${k}^{2}{\overrightarrow{a}}^{2}$-$\overrightarrow{{b}^{2}}$=k2-4=0,
解得k=±2.

点评 本题考查向量的模的求法,考查实数值的求法,是基础题,解题时要认真审题,注意向量的数量积的求法和向量垂直的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网