题目内容
【题目】为了提高学生的身体素质,某校高一、高二两个年级共名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取名和名学生进行测试.下表是高二年级的名学生的测试数据(单位:个/分钟):
学生编号 | 1 | 2 | 3 | 4 | 5 |
跳绳个数 | 179 | 181 | 168 | 177 | 183 |
踢毽个数 | 85 | 78 | 79 | 72 | 80 |
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳个/分钟,踢毽个/分钟.当,且时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述名学生中,随机抽取人,求抽取的名学生中为“span>运动达人”的人数的分布列和数学期望.
【答案】(1)高一年级有人,高二年级有人;(2)①,②见解析,
【解析】
(1)根据分层抽样的特点直接求出答案;
(2)①由表可知,从高二抽取的学生中“运动达人”有3人,即可算出结果;
②由题可知的所有可能取值为,通过计算列出分布列,算出数学期望即可.
(1)设高一年级有人,高二年级有人.
采用分层抽样,有,,所以高一年级有人,高二年级有人.
(2)从上表可知,从高二抽取的名学生中,编号为的学生是“运动达人”.故从高二年级的学生中任选一人,该学生为“运动达人”的概率估计为;
②的所有可能取值为,
,,,
所以的分布列为
1 | 2 | 3 | |
故的期望.
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?