ÌâÄ¿ÄÚÈÝ
£¨2012•ÆÕÍÓÇøһģ£©ÉèµãFÊÇÅ×ÎïL£ºy2=2px£¨p£¾0£©µÄ½¹µã£¬P1£¬P2£¬¡£¬PnÊÇÅ×ÎïÏßLÉϵÄn¸ö²»Í¬µÄµãn£¨n¡Ý3£¬n¡ÊN*£©£®
£¨1£©µ±p=2ʱ£¬ÊÔд³öÅ×ÎïÏßLÉÏÈýµãP1¡¢P2¡¢P3µÄ×ø±ê£¬Ê±ÆÚÂú×ã|
|+|
|+|
|=6£»
£¨2£©µ±n¡Ý3ʱ£¬Èô
+
+¡+
=
£¬ÇóÖ¤£º|
|+|
|+¡+|
|=np£»
£¨3£©µ±n£¾3ʱ£¬Ä³Í¬Ñ§¶Ô£¨2£©µÄÄæÃüÌ⣬¼´£º¡°Èô|
|+|
|+¡+|
|=np£¬Ôò
+
+¡+
=
¡±¿ªÕ¹ÁËÑо¿²¢·¢ÏÖÆäΪ¼ÙÃüÌ⣮
ÇëÄã¾Í´Ë´ÓÒÔÏÂÈý¸öÑо¿·½ÏòÖÐÈÎÑ¡Ò»¸ö¿ªÕ¹Ñо¿£º
1£®ÊÔ¹¹ÔìÒ»¸ö˵Ã÷¸ÃÃüÌâȷʵÊǼÙÃüÌâµÄ·´Àý£»
2£®¶ÔÈÎÒâ¸ø¶¨µÄ´óÓÚ3µÄÕýÕûÊýn£¬ÊÔ¹¹Ôì¸Ã¼ÙÃüÌâ·´ÀýµÄÒ»°ãÐÎʽ£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£º
3£®Èç¹û²¹³äÒ»¸öÌõ¼þºóÄÜʹ¸ÃÃüÌâΪÕ棬Çëд³öÄãÈÏΪÐèÒª²¹³äµÄÒ»¸öÌõ¼þ£¬²¢ËµÃ÷¼ÓÉϸÃÌõ¼þºó£¬ÄÜʹ¸ÃÄæÃüÌâΪÕæÃüÌâµÄÀíÓÉ£®
£¨1£©µ±p=2ʱ£¬ÊÔд³öÅ×ÎïÏßLÉÏÈýµãP1¡¢P2¡¢P3µÄ×ø±ê£¬Ê±ÆÚÂú×ã|
FP1 |
FP2 |
FP3 |
£¨2£©µ±n¡Ý3ʱ£¬Èô
FP1 |
FP2 |
FPn |
0 |
FP1 |
FP2 |
FPn |
£¨3£©µ±n£¾3ʱ£¬Ä³Í¬Ñ§¶Ô£¨2£©µÄÄæÃüÌ⣬¼´£º¡°Èô|
FP1 |
FP2 |
FPN |
FP1 |
FP2 |
FPN |
0 |
ÇëÄã¾Í´Ë´ÓÒÔÏÂÈý¸öÑо¿·½ÏòÖÐÈÎÑ¡Ò»¸ö¿ªÕ¹Ñо¿£º
1£®ÊÔ¹¹ÔìÒ»¸ö˵Ã÷¸ÃÃüÌâȷʵÊǼÙÃüÌâµÄ·´Àý£»
2£®¶ÔÈÎÒâ¸ø¶¨µÄ´óÓÚ3µÄÕýÕûÊýn£¬ÊÔ¹¹Ôì¸Ã¼ÙÃüÌâ·´ÀýµÄÒ»°ãÐÎʽ£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£º
3£®Èç¹û²¹³äÒ»¸öÌõ¼þºóÄÜʹ¸ÃÃüÌâΪÕ棬Çëд³öÄãÈÏΪÐèÒª²¹³äµÄÒ»¸öÌõ¼þ£¬²¢ËµÃ÷¼ÓÉϸÃÌõ¼þºó£¬ÄÜʹ¸ÃÄæÃüÌâΪÕæÃüÌâµÄÀíÓÉ£®
·ÖÎö£º£¨1£©Å×ÎïÏßlµÄ½¹µãΪF£¨
£¬0£©£¬ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬ÀûÓÃÅ×ÎïÏߵĶ¨Òå¿ÉµÃx1+x2+x3=3£¬¹Ê¿ÉÈ¡Âú×ãÌõ¼þµÄÈýµã£»
£¨2£©ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn£¬ÀûÓÃÅ×ÎïÏߵĶ¨Òå¿ÉµÃx1+x2+x3+¡+xn=
£¬´Ó¶ø¿ÉÖ¤
|+|
|+¡+|
|=np
£¨3£©¢ÙÈ¡n=4ʱ£¬Å×ÎïÏßlµÄ½¹µãΪF£¨
£¬0£©£¬ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬P4£¨x4£¬y4£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬P4×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬Q4£¬ÀûÓÃÅ×ÎïÏߵĶ¨Ò壬¿ÉµÃx1+x2+x3+x4=2p£¬´Ó¶ø¿ÉµÃ½áÂÛ£»
¢ÚÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn£¬ÀûÓÃÅ×ÎïÏߵĶ¨Ò壬¿ÉµÃx1+x2+x3+¡+xn=
£¬´Ó¶ø¿ÉµÃ½áÂÛ£»
¢Û²¹³äÌõ¼þ£ºµãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬¼´µ±n£¾3ʱ£¬|
|+|
|+¡+|
|=np£¬µãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬Ôò
+
+¡+
=
£®
p |
2 |
£¨2£©ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn£¬ÀûÓÃÅ×ÎïÏߵĶ¨Òå¿ÉµÃx1+x2+x3+¡+xn=
np |
2 |
|FP1 |
FP2 |
FPn |
£¨3£©¢ÙÈ¡n=4ʱ£¬Å×ÎïÏßlµÄ½¹µãΪF£¨
p |
2 |
¢ÚÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn£¬ÀûÓÃÅ×ÎïÏߵĶ¨Ò壬¿ÉµÃx1+x2+x3+¡+xn=
np |
2 |
¢Û²¹³äÌõ¼þ£ºµãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬¼´µ±n£¾3ʱ£¬|
FP1 |
FP2 |
FPn |
FP1 |
FP2 |
FPn |
0 |
½â´ð£º½â£º£¨1£©Å×ÎïÏßlµÄ½¹µãΪF£¨
£¬0£©£¬ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬
·Ö±ð¹ýP1¡¢P2¡¢P3×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬
¡à|
|+|
|+|
|=£¨x1+
£©+£¨x2+
£©+£¨x3+
£©=x1+x2+x3+
=6
¡ßp=2£¬¡àx1+x2+x3=3
¹Ê¿ÉÈ¡P1£¨
£¬
£©£¬P2£¨1£¬2£©£¬P3£¨
£¬
£©Âú×ãÌõ¼þ£»
£¨2£©ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn
¡à
|+|
|+¡+|
|=£¨x1+
£©+£¨x2+
£©+£¨x3+
£©+¡+£¨xn+
£©=x1+x2+x3+¡+xn+
¡ß
+
+¡+
=
¡àx1+x2+x3+¡+xn=
¡à
|+|
|+¡+|
|=
+
=np
£¨3£©¢ÙÈ¡n=4ʱ£¬Å×ÎïÏßlµÄ½¹µãΪF£¨
£¬0£©£¬ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬P4£¨x4£¬y4£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬P4×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬Q4£¬
¡à
|+|
|+¡+|
|=x1+x2+x3+x4+2p=4p
¡àx1+x2+x3+x4=2p
²»·ÁÈ¡P1(
£¬
)£¬P2(
£¬p)£¬P3(
£¬-p)£¬P4(
£¬
)£¬Ôò
+
+¡+
¡Ù
¹ÊP1(
£¬
)£¬P2(
£¬p)£¬P3(
£¬-p)£¬P4(
£¬
)ÊÇÒ»¸öµ±n=4ʱ£¬¸ÃÄæÃüÌâµÄÒ»¸ö·´Àý£»
¢ÚÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn
¡ß|
|+|
|+¡+|
|=np£¬¡àx1+x2+x3+¡+xn+
=np£¬¡àx1+x2+x3+¡+xn=
ÒòΪÉÏÊö±í´ïʽÓëµãµÄ×Ý×ø±êÎ޹أ¬ËùÒÔ½«Õânµã¶¼È¡ÔÚxÖáµÄÉÏ·½£¬ÔòËüÃǵÄ×Ý×ø±ê¶¼´óÓÚ0£¬Ôò
+
+¡+
=£¨0£¬y1+y2+¡+yn£©¡Ù
¢Û²¹³äÌõ¼þ£ºµãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬¼´µ±n£¾3ʱ£¬|
|+|
|+¡+|
|=np£¬µãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬Ôò
+
+¡+
=
ÓÉ¢ÚÖª£¬ÃüÌâΪÕ森
p |
2 |
·Ö±ð¹ýP1¡¢P2¡¢P3×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬
¡à|
FP1 |
FP2 |
FP3 |
p |
2 |
p |
2 |
p |
2 |
3p |
2 |
¡ßp=2£¬¡àx1+x2+x3=3
¹Ê¿ÉÈ¡P1£¨
1 |
2 |
2 |
3 |
2 |
6 |
£¨2£©ÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn
¡à
|FP1 |
FP2 |
FPn |
p |
2 |
p |
2 |
p |
2 |
p |
2 |
np |
2 |
¡ß
FP1 |
FP2 |
FPn |
0 |
¡àx1+x2+x3+¡+xn=
np |
2 |
¡à
|FP1 |
FP2 |
FPn |
np |
2 |
np |
2 |
£¨3£©¢ÙÈ¡n=4ʱ£¬Å×ÎïÏßlµÄ½¹µãΪF£¨
p |
2 |
¡à
|FP1 |
FP2 |
FP4 |
¡àx1+x2+x3+x4=2p
²»·ÁÈ¡P1(
p |
4 |
| ||
2 |
p |
2 |
p |
2 |
3p |
4 |
| ||
2 |
FP1 |
FP2 |
FP4 |
0 |
¹ÊP1(
p |
4 |
| ||
2 |
p |
2 |
p |
2 |
3p |
4 |
| ||
2 |
¢ÚÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬¡£¬Pn£¨xn£¬yn£©£¬·Ö±ð¹ýP1¡¢P2¡¢P3£¬¡£¬Pn×÷Å×ÎïÏßµÄ×¼ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪQ1¡¢Q2¡¢Q3£¬¡£¬Qn
¡ß|
FP1 |
FP2 |
FPn |
np |
2 |
np |
2 |
ÒòΪÉÏÊö±í´ïʽÓëµãµÄ×Ý×ø±êÎ޹أ¬ËùÒÔ½«Õânµã¶¼È¡ÔÚxÖáµÄÉÏ·½£¬ÔòËüÃǵÄ×Ý×ø±ê¶¼´óÓÚ0£¬Ôò
FP1 |
FP2 |
FPn |
0 |
¢Û²¹³äÌõ¼þ£ºµãPiµÄ×Ý×ø±êÂú×ãy1+y2+¡+yn=0£¬¼´µ±n£¾3ʱ£¬|
FP1 |
FP2 |
FPn |
FP1 |
FP2 |
FPn |
0 |
ÓÉ¢ÚÖª£¬ÃüÌâΪÕ森
µãÆÀ£º±¾Ì⿼²éÅ×ÎïÏߵĶ¨Ò壬¿¼²éÏòÁ¿µÄÔËË㣬½âÌâµÄ¹Ø¼üÊÇÕýÈ·ÔËÓÃÅ×ÎïÏߵĶ¨Ò壬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿