题目内容
在中,,,点是的中点,点满足,则 .
设,若时,恒有,则 .
已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.
(1)求椭圆的标准方程;
(2)经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且,
其中为坐标原点,求直线的斜率.
已知均为非负实数,且满足,则的最大值为( )
A. B. C. D.
已知命题的定义域是;命题在第一象限为增函数,若“”为假,“”为真,求的取值范围.
已知函数,若是方程的根,则( )
A. B. C. D.
选修4-5:不等式选讲
已知使不等式成立.
(1)求满足条件的实数的取值集合;
(2)若,对,不等式恒成立,求的最小值.
已知,给出下列四个结论:
①②③④
其中正确结论的序号是( )
A.①② B.②③ C.②④ D.③④
利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为的概率为.下列选项中,最能反映与的关系的是( )
A. B.
C. D.