ÌâÄ¿ÄÚÈÝ
11£®¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬¸ø³öÏÂÁÐÃüÌ⣺¢ÙÈôcosBcosC£¾sinBsinC£¬Ôò¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ»
¢ÚÈôsin2A+sin2B=sin2C£¬Ôò¡÷ABCÒ»¶¨ÊÇÖ±½ÇÈý½ÇÐΣ»
¢ÛÈôbcosA=acosB£¬Ôò¡÷ABCΪµÈÑüÈý½ÇÐΣ»
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾B£¬ÔòsinA£¾sinB£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬ÔòsinA£¼cosB£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ڢۢܣ®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö ¢ÙÀûÓÃÁ½½ÇºÍ²îµÄÓàÏÒ¹«Ê½½øÐл¯¼ò¼´¿É£»
¢ÚÀûÓÃÕýÏÒ¶¨Àí»¯½ÇΪ±ß¿ÉµÃa2+b2=c2£¬´Ó¶øÅж¨Èý½ÇÐεÄÐÎ×´
¢ÛÀûÓÃÕýÏÒ¶¨Àí»¯±ßΪ½ÇÕûÀí¿ÉµÃsin£¨B-A£©=0£¬¼´¿ÉµÃ³ö½áÂÛ
¢ÜÏȸù¾Ý´ó½Ç¶Ô´ó±ßµÃµ½a£¾b£¬ÔÙ½áºÏÕýÏÒ¶¨Àí»¯±ßΪ½Ç¼´¿ÉµÃµ½½áÂÛ£®
¢ÝÀûÓÃÈý½Çº¯ÊýµÄÓÕµ¼¹«Ê½½øÐл¯¼ò¼´¿É£®
½â´ð ½â£º¢ÙÈôÈôcosBcosC£¾sinBsinC£¬ÔòÈôcosBcosC-sinBsinC=cos£¨B+C£©£¾0£¬
¼´-cosA£¾0£¬cosA£¼0£¬Ôò¡ÏAΪ¶Û½Ç£¬¹Ê¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ¬ÕýÈ·£®
¢ÚÈôsin2A+sin2B=sin2C£¬ÔòÓÉÕýÏÒ¶¨ÀíµÃa2+b2=c2£¬Ôò¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ¬ÕýÈ·£¬
¢ÛÈôbcosA=acosB£¬ÔòÓÉÕýÏÒ¶¨ÀíµÃ2rsinBcosA=2rsinAcosB£¬¼´sin£¨B-A£©=0£¬ÔòA=B£®Ôò¡÷ABCΪµÈÑüÈý½ÇÐΣ¬ÕýÈ·£¬
¢ÜÔÚ¡÷ABCÖУ¬ÈôA£¾BÔòa£¾b£¬¼´sinA£¾sinB³ÉÁ¢£¬ÕýÈ·£»
¢ÝÈô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬Ôò0£¼A£¼$\frac{¦Ð}{2}$£¬0£¼B£¼$\frac{¦Ð}{2}$£¬0£¼C£¼$\frac{¦Ð}{2}$£¬¼´0£¼¦Ð-A-B£¼$\frac{¦Ð}{2}$£¬
¼´A+B£¾$\frac{¦Ð}{2}$£¬¡àB£¾$\frac{¦Ð}{2}$-A£¬
¡à0£¼$\frac{¦Ð}{2}$-A£¼B£¼$\frac{¦Ð}{2}$£¬¼´cos£¨$\frac{¦Ð}{2}$-A£©£¾cosB£¬
¡à0£¼cosB£¼sinA£¼1£¬¹Ê¢Ý´íÎó£¬
¹ÊÕýÈ·ÃüÌâµÄÊÇ£º¢Ù¢Ú¢Û¢Ü£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°ÕýÏÒ¶¨ÀíÒÔ¼°Èý½Çº¯ÊýµÄÓÕµ¼¹«Ê½£¬Á½½ÇºÍ²îµÄÓàÏÒ¹«Ê½£¬¿¼²éѧÉúµÄÍÆÀíÄÜÁ¦£®
A£® | $\frac{1}{2}$a | B£® | $\frac{{\sqrt{2}}}{2}$a | C£® | $\frac{{\sqrt{3}}}{2}$a | D£® | a |
A£® | {1£¬2} | B£® | {3£¬4} | C£® | {1} | D£® | {-2£¬-1£¬0£¬1£¬2} |