题目内容
【题目】已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD=60°,则异面直线AB与DE所成角的正弦值为( )
A.B.C.D.
【答案】A
【解析】
根据圆锥高和底面的半径相等,且点D为底面圆周上的一点,∠ABD=60,可知D为的中点,则以底面中心为原点,分别以OD,OE,OA为x,y,z轴,建立空间直角坐标系,不妨设底面半径为1,求得向量,的坐标,代入公式cos,求解.
因为高和底面的半径相等,∴OE=OB=OA,OA⊥底面DEB.
∵点D为底面圆周上的一点,且∠ABD=60°,
∴AB=AD=DB;
∴D为的中点
建立如图所示空间直角坐标系,
不妨设OB=1.
则O(0,0,0),B(0,﹣1,0),D(1,0,0),A(0,0,1),E(0,1,0),
∴(0,﹣1,﹣1),(﹣1,1,0),
∴cos,,
∴异面直线AM与PB所成角的大小为.
∴异面直线AB与DE所成角的正弦值为.
故选:A.
练习册系列答案
相关题目