题目内容
6.已知数列{an}的通项为an=$\frac{2n-1}{{2}^{n-1}}$,求an的前n项和Sn.分析 通过an=$\frac{2n-1}{{2}^{n-1}}$可知Sn=1•$\frac{1}{{2}^{0}}$+3•$\frac{1}{2}$+5•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n-1}}$、$\frac{1}{2}$Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+5•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n-1}}$+(2n-1)•$\frac{1}{{2}^{n}}$,利用错位相减法计算即得结论.
解答 解:∵an=$\frac{2n-1}{{2}^{n-1}}$,
∴Sn=1•$\frac{1}{{2}^{0}}$+3•$\frac{1}{2}$+5•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+5•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n-1}}$+(2n-1)•$\frac{1}{{2}^{n}}$,
两式相减得:$\frac{1}{2}$Sn=1+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-2}}$-(2n-1)•$\frac{1}{{2}^{n}}$
=1+$\frac{1-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-(2n-1)•$\frac{1}{{2}^{n}}$
=3-$\frac{2n+3}{{2}^{n}}$,
∴Sn=6-$\frac{2n+3}{{2}^{n-1}}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.