题目内容
【题目】(2015·湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,求下列问题:(1)求顾客抽奖1次能获奖的概率(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 X ,求 X 的分布列和数学期望.
(1)(1)求顾客抽奖1次能获奖的概率
(2)(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 , 求的分布列和数学期望.
【答案】
(1)
(2)
X | 0 | 1 | 2 | 3 |
P |
E(X)=.
【解析】(1):记事件={从甲箱中摸出的1个球是红球},={从乙箱中摸出1一个球是红球}={顾客抽奖1次获得一等奖}={顾客抽奖一次获得二等奖},={顾客抽奖一次能获奖}则可知与相互独立,与互斥,与互斥且,+、因为所以,==故所求概率为=
(2)顾客抽奖3次独立重复实验,由(1)知顾客抽奖一次获得一等奖的概率为因为于是 , , , E(X)=.
的分布列为随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).