题目内容
若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的( )
| A.充分不必要条件 | B.必要不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
若a>0且b2-4ac<0,则对任意x∈R,有ax2+bx+c>0,
反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0.
故“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充分不必要条件
故选A
反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0.
故“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充分不必要条件
故选A
练习册系列答案
相关题目