题目内容

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,上顶点为A,P为C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,若与AF平行且在y轴上的截距为3-
2
的直线l恰好与圆C2相切.
(Ⅰ)已知椭圆C1的离心率;
(Ⅱ)若
PM
PN
的最大值为49,求椭圆C1的方程.
分析:(Ⅰ先得出直线l的方程,再由直线与圆相切得a2=2c2,从而求得离心率;
(II)设P(x,y)由
PM
PN
的最大值为49,求得c的值,从而求得椭圆方程.
解答:解:(Ⅰ)由题意可知直线l的方程为bx+cy-(3-
2
)c=0

因为直线与圆c2:x2+(y-3)2=1相切,所以d=
|3c-3c+
2c
|
b2+c2
=1
,即a2=2c2
从而e=
2
2
;(6分)
(Ⅱ)设P(x,y)、圆C2的圆心记为C2,则
x2
2c2
+
y2
c2
=1
(c>0),又
PM
PN
=(
PC2
+
C2M)
•(
PC2
+
C2N
)=
PC2
2
-
C2N
2
=x2+(3-y)2-1=-(y+3)2+2c2+17(-c≤y≤c).(8分)
j当c≥3时,(
PM
PN
)MAX=17+2c2=49
,解得c=4,此时椭圆方程为
x2
32
+
y2
16
=1

k当0<c<3时,(
PM
PN
)MAX=-(-c+3)2+17+2c2=49

解得c=5
2
-3
c=5
2
-3>3
,故舍去.
综上所述,椭圆的方程为
x2
32
+
y2
16
=1
.(14分)
点评:本题主要考查直线、圆、椭圆的基本性质及位置关系的应用,渗透向量、函数最值等问题,培养学生综合运用知识的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网