题目内容
已知0<k<4,直线l1:kx-2y-2k+8=0和直线l2:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为________.
由题意知直线l1、l2恒过定点P(2,4),且l1斜率为正数,l2斜率为负数,如图所示,直线l1的纵截距为4-k,直线l2的横截距为2k2+2,所以四边形的面积S=×2×(4-k)+×4×(2k2+2)=4k2-k+8,
故面积最小时,k=.
故面积最小时,k=.
练习册系列答案
相关题目