题目内容

(本小题满分14分) 

如图,已知直线与抛物线相交于两点,与轴相交于点,若.(1)求证:点的坐标为(1,0);(2)求△AOB的面积的最小值.

 

【答案】

 

解: (1) 设M点的坐标为(x0, 0), 直线l方程为 x = my + x0 ,

代入y2 = x得 y2-my-x0 = 0     ①    y1、y2是此方程的两根,

∴ x0 =-y1y2 =1,即M点的坐标为(1, 0)------------------------------------------------7分

(2)法一:

由方程①得y1+y2 = m ,y1y2 =-1 ,且 | OM | = x0 =1,

于是S△AOB = | OM | |y1-y2| ==≥1,

∴ 当m = 0时,△AOB的面积取最小值1.       ----------------------------------------14分

  法二:(不妨设y1>y2

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网