题目内容
已知椭圆的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂
直于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)当P不在轴上时,在曲线
上是否存在两个不同点C、D关于
对称,若存在,
求出的斜率范围,若不存在,说明理由。
【答案】
(Ⅰ) ;(Ⅱ)
;
(3)在曲线上不存在两个不同点C、D关于
对称
【解析】本试题主要是考查了椭圆的方程求解以及直线与椭圆的位置关系的综合运用。
(1)利用椭圆的几何性质和直线与圆相切得到椭圆的方程。
(2)∵MP=MF2,
∴动点M到定直线的距离等于它到定点F1(1,0)的距离,
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线可知结论。
(3)设点的坐标,利用对称性来分析证明不存在符合题意的结论。
解:(Ⅰ)∵
∵直线相切,
∴ ∴
∵椭圆C1的方程是
(Ⅱ)∵MP=MF2,
∴动点M到定直线的距离等于它到定点F1(1,0)的距离,
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线 ………………6分
∴点M的轨迹C2的方程为 …………7分
(3)显然不与
轴垂直,设
(
,
),
(
,
),且
≠
,则
=
.
若存在C、D关于对称,则
=-
∵
≠0,∴
≠0
设线段的中点为
,则
=
(
+
)=
,
=
,
将代入
方程
求得:
=-
(
-
)=
(
-
)
∵-
=
-
≠1∴
≠
(
)=
∴线段
的中点
不在直线
上.所以在曲线
上不存在两个不同点C、D关于
对称
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|